Detection of Jargon Words in a Text Using Semi-supervised Learning
نویسندگان
چکیده
The proposed approach deals with the detection of jargon words in electronic data in different communication mediums like internet, mobile services etc. But in the real life, the jargon words are not used in complete word forms always. Most of the times, those words are used in different abbreviated forms like sounds alike forms, taboo morphemes etc. This proposed approach detects those abbreviated forms also using semi supervised learning methodology. This learning methodology derives the probability of a suspicious word to be a jargon word by the synset and concept analysis of the text.
منابع مشابه
Emotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملDetection of Slang Words in e-Data using semi-Supervised Learning
The proposed algorithmic approach deals with finding the sense of a word in an electronic data. Now a day, in different communication mediums like internet, mobile services etc. people use few words, which are slang in nature. This approach detects those abusive words using supervised learning procedure. But in the real life scenario, the slang words are not used in complete word forms always. ...
متن کاملMEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...
متن کاملSemi-supervised Sentiment Classification using Ranked Opinion Words
This work proposes a semi-supervised sentiment classification method which is based on the co-training framework. The proposed method needs to construct three sentiment classifiers. We use common text features to construct the first classifier. We extract opinion words from consumer reviews, and then we ranked these opinion words according to their importance. We also employ extracted opinion w...
متن کاملActive Learning of Event Detection Patterns
Retraining an event extraction system for a new class of events requires considerable effort. A given type of event may appear in many linguistic forms, and mentions of the event type may be relatively infrequent in running text; together, this means that, with sequential annotation, a large amount of text must be annotated to train a system of reasonable performance. Semi-supervised training c...
متن کامل